問題を入力...
線形代数 例
ステップ 1
ステップ 1.1
たすき掛けを利用してを因数分解します。
ステップ 1.1.1
の形式を考えます。積がで和がである整数の組を求めます。このとき、その積がで、その和がです。
ステップ 1.1.2
この整数を利用して因数分解の形を書きます。
ステップ 1.2
群による因数分解。
ステップ 1.2.1
の形の多項式について、積がで和がである2項の和に中央の項を書き換えます。
ステップ 1.2.1.1
をで因数分解します。
ステップ 1.2.1.2
をプラスに書き換える
ステップ 1.2.1.3
分配則を当てはめます。
ステップ 1.2.2
各群から最大公約数を因数分解します。
ステップ 1.2.2.1
前の2項と後ろの2項をまとめます。
ステップ 1.2.2.2
各群から最大公約数を因数分解します。
ステップ 1.2.3
最大公約数を因数分解して、多項式を因数分解します。
ステップ 2
を公分母のある分数として書くために、を掛けます。
ステップ 3
を公分母のある分数として書くために、を掛けます。
ステップ 4
ステップ 4.1
にをかけます。
ステップ 4.2
にをかけます。
ステップ 4.3
の因数を並べ替えます。
ステップ 5
公分母の分子をまとめます。
ステップ 6
ステップ 6.1
分配則を当てはめます。
ステップ 6.2
にをかけます。
ステップ 6.3
にをかけます。
ステップ 6.4
分配則を当てはめます。
ステップ 6.5
にをかけます。
ステップ 6.6
をの左に移動させます。
ステップ 6.7
からを引きます。
ステップ 6.8
項を並べ替えます。